Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
World Neurosurg ; 158: e196-e205, 2022 02.
Article in English | MEDLINE | ID: covidwho-1525984

ABSTRACT

BACKGROUND: Urgent neurosurgical interventions for pediatric patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are rare. These cases pose additional stress on a potentially vulnerable dysregulated inflammatory response that can place the child at risk of further clinical deterioration. Our aim was to describe the perioperative course of SARS-CoV-2-positive pediatric patients who had required an urgent neurosurgical intervention. METHODS: We retrospectively analyzed pediatric patients aged ≤18 years who had been admitted to a quaternary children's hospital with a positive polymerase chain reaction test result for SARS-CoV-2 virus from March 2020 to October 2021. The clinical characteristics, anesthetic and neurosurgical operative details, surgical outcomes, and non-neurological symptoms were collected and analyzed. RESULTS: We identified 8 SARS-CoV-2-positive patients with a mean age of 8.83 years (median, 8.5 years; range, 0.58-18 years). Of the 8 patients, 6 were male. All children had had mild or asymptomatic coronavirus disease 2109. The anesthetic and surgical courses for these patients were, overall, uncomplicated. All the patients had been admitted to a specialized isolation unit in the pediatric intensive care unit for cardiopulmonary and neurological monitoring. The use of increased protective personal equipment during anesthesia and surgery did not impede a successful neurosurgical operation. CONCLUSIONS: SARS-CoV-2-positive pediatric patients with minimal coronavirus disease 2019-related symptoms who require urgent neurosurgical interventions face unique challenges regarding their anesthetic status, operative delays due to SARS-CoV-2 polymerase chain reaction testing, and requirements for additional protective personal equipment. Despite these clinical challenges, the patients in our study had not experienced adverse postoperative consequences, and no healthcare professional involved in their care had contracted the virus.


Subject(s)
COVID-19 , Neurosurgical Procedures , Asymptomatic Diseases , Child , Female , Health Personnel , Humans , Male , Retrospective Studies , SARS-CoV-2
3.
Life Sci ; 257: 118113, 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-652999

ABSTRACT

AIMS: To create a low-cost ventilator that could be constructed with readily-available hospital equipment for use in emergency or low-resource settings. MAIN METHODS: The novel ventilator consists of an inspiratory limb composed of an elastic flow-inflating bag encased within a non-compliant outer sheath and an expiratory limb composed of a series of two, one-way bidirectional splitter valves derived from a self-inflating bag system. An Arduino Uno microcontroller controls a solenoid valve that can be programmed to open and close to produce a set respiratory rate and inspiratory time. Using an ASL 5000 Lung Simulator, we obtained flow, pressure, and volume waveforms at different lung compliances. KEY FINDINGS: At a static lung compliance of 50 mL/cm H2O and an airway resistance of 6 cm H2O/L/s, ventilated at a PIP and PEEP of 16 and 5 cm H2O, respectively, tidal volumes of approximately 540 mL were achieved. At a static lung compliance of 20 mL/cm H2O and an airway resistance of 6 cm H2O/L/s, ventilated at a PIP and PEEP of 38 and 15 cm H2O, respectively, tidal volumes of approximately 495 mL were achieved. SIGNIFICANCE: This novel ventilator is able to safely and reliably ventilate patients with a range of pulmonary disease in a simulated setting. Opportunities exist to utilize our ventilator in emergency situations and low-resource settings.


Subject(s)
Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Airway Resistance/physiology , Betacoronavirus/pathogenicity , COVID-19 , Humans , Lung/physiology , Pandemics , Respiratory Rate/physiology , SARS-CoV-2 , Tidal Volume/physiology , Ventilators, Mechanical/supply & distribution
4.
Pediatr Blood Cancer ; 67(11): e28693, 2020 11.
Article in English | MEDLINE | ID: covidwho-743696

ABSTRACT

There are no proven safe and effective therapies for children who develop life-threatening complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Convalescent plasma (CP) has demonstrated potential benefit in adults with SARS-CoV-2, but has theoretical risks.We present the first report of CP in children with life-threatening coronavirus disease 2019 (COVID-19), providing data on four pediatric patients with acute respiratory distress syndrome. We measured donor antibody levels and recipient antibody response prior to and following CP infusion. Infusion of CP was not associated with antibody-dependent enhancement (ADE) and did not suppress endogenous antibody response. We found CP was safe and possibly efficacious. Randomized pediatric trials are needed.


Subject(s)
COVID-19/therapy , Respiratory Distress Syndrome/therapy , Adolescent , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/blood , Antibodies, Viral/therapeutic use , COVID-19/complications , Humans , Immunization, Passive/methods , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Respiratory Distress Syndrome/etiology , SARS-CoV-2/immunology , Severity of Illness Index , COVID-19 Serotherapy
5.
J Clin Invest ; 130(11): 5967-5975, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-690425

ABSTRACT

BACKGROUNDInitial reports from the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic described children as being less susceptible to coronavirus disease 2019 (COVID-19) than adults. Subsequently, a severe and novel pediatric disorder termed multisystem inflammatory syndrome in children (MIS-C) emerged. We report on unique hematologic and immunologic parameters that distinguish between COVID-19 and MIS-C and provide insight into pathophysiology.METHODSWe prospectively enrolled hospitalized patients with evidence of SARS-CoV-2 infection and classified them as having MIS-C or COVID-19. Patients with COVID-19 were classified as having either minimal or severe disease. Cytokine profiles, viral cycle thresholds (Cts), blood smears, and soluble C5b-9 values were analyzed with clinical data.RESULTSTwenty patients were enrolled (9 severe COVID-19, 5 minimal COVID-19, and 6 MIS-C). Five cytokines (IFN-γ, IL-10, IL-6, IL-8, and TNF-α) contributed to the analysis. TNF-α and IL-10 discriminated between patients with MIS-C and severe COVID-19. The presence of burr cells on blood smears, as well as Cts, differentiated between patients with severe COVID-19 and those with MIS-C.CONCLUSIONPediatric patients with SARS-CoV-2 are at risk for critical illness with severe COVID-19 and MIS-C. Cytokine profiling and examination of peripheral blood smears may distinguish between patients with MIS-C and those with severe COVID-19.FUNDINGFinancial support for this project was provided by CHOP Frontiers Program Immune Dysregulation Team; National Institute of Allergy and Infectious Diseases; National Cancer Institute; the Leukemia and Lymphoma Society; Cookies for Kids Cancer; Alex's Lemonade Stand Foundation for Childhood Cancer; Children's Oncology Group; Stand UP 2 Cancer; Team Connor; the Kate Amato Foundations; Burroughs Wellcome Fund CAMS; the Clinical Immunology Society; the American Academy of Allergy, Asthma, and Immunology; and the Institute for Translational Medicine and Therapeutics.


Subject(s)
Betacoronavirus/metabolism , Complement Membrane Attack Complex/metabolism , Coronavirus Infections , Cytokines/blood , Pandemics , Pneumonia, Viral , Systemic Inflammatory Response Syndrome , Adolescent , COVID-19 , Child , Child, Preschool , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Female , Humans , Male , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Prospective Studies , SARS-CoV-2 , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/epidemiology
6.
Pediatr Crit Care Med ; 21(9): e651-e660, 2020 09.
Article in English | MEDLINE | ID: covidwho-631606

ABSTRACT

OBJECTIVES: While most pediatric coronavirus disease 2019 cases are not life threatening, some children have severe disease requiring emergent resuscitative interventions. Resuscitation events present risks to healthcare provider safety and the potential for compromised patient care. Current resuscitation practices and policies for children with suspected/confirmed coronavirus disease 2019 are unknown. DESIGN: Multi-institutional survey regarding inpatient resuscitation practices during the coronavirus disease 2019 pandemic. SETTING: Internet-based survey. SUBJECTS: U.S. PICU representatives (one per institution) involved in resuscitation system planning and oversight. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 130 institutions surveyed, 78 (60%) responded. Forty-eight centers (62%) had admitted coronavirus disease 2019 patients; 26 (33%) reported code team activation for patients with suspected/confirmed coronavirus disease 2019. Sixty-seven respondents (86%) implemented changes to inpatient emergency response systems. The most common changes were as follows: limited number of personnel entering patient rooms (75; 96%), limited resident involvement (71; 91%), and new or refined team roles (74; 95%). New or adapted technology is being used for coronavirus disease 2019 resuscitations in 58 centers (74%). Most institutions (57; 73%) are using enhanced personal protective equipment for all coronavirus disease 2019 resuscitation events; 18 (23%) have personal protective equipment policies dependent on the performance of aerosol generating procedures. Due to coronavirus disease 2019, most respondents are intubating earlier during cardiopulmonary resuscitation (56; 72%), utilizing video laryngoscopy (67; 86%), pausing chest compressions during laryngoscopy (56; 72%), and leaving patients connected to the ventilator during cardiopulmonary resuscitation (56; 72%). Responses were varied regarding airway personnel, prone cardiopulmonary resuscitation, ventilation strategy during cardiopulmonary resuscitation without an airway in place, and extracorporeal cardiopulmonary resuscitation. Most institutions (46; 59%) do not have policies regarding limitations of resuscitation efforts in coronavirus disease 2019 patients. CONCLUSIONS: Most U.S. pediatric institutions rapidly adapted their resuscitation systems and practices in response to the coronavirus disease 2019 pandemic. Changes were commonly related to team members and roles, personal protective equipment, and airway and breathing management, reflecting attempts to balance quality resuscitation with healthcare provider safety.


Subject(s)
Cardiopulmonary Resuscitation/methods , Coronavirus Infections/epidemiology , Heart Arrest/therapy , Hospitals , Pandemics , Pneumonia, Viral/epidemiology , Airway Management/methods , Betacoronavirus , COVID-19 , Child , Coronavirus Infections/therapy , Humans , Intensive Care Units, Pediatric , Pneumonia, Viral/therapy , Practice Guidelines as Topic , SARS-CoV-2 , Surveys and Questionnaires , United States
SELECTION OF CITATIONS
SEARCH DETAIL